

ITER ... Die Zukunft

Johannes P. Schwemmer

KIT, 17/5/2022

Dr Bernard Bigot

24th January 1950 – 14th May 2022 ITER Director-General 2015-2022

Why is fusion energy attractive?

Abundant

Fuels are plentiful and available all over the world

Sustainable

No greenhouse gas (CO₂) emissions

Safe

No long-lived radioactive waste

Reactors can not run out of control

Large amounts of energy for little fuel

280 liters of Earth crust (50 g lithium)

300 tonnes of oil

Total energy consumed by average EU citizen during whole life

+ 400 liters of water (12 g deuterium)

A long way to replace fossil fuels

Since 1960's many different fusion experiments

What is the roadmap to fusion energy?

Worldwide roadmaps to electricity generation

Europe: two main pillars

Fusion for Energy (F4E)

- F4E is a EU public organisation set up in 2007 for 35 years
- Headquarters: Barcelona, Spain
- Offices: Cadarache, France Garching, Germany Naka & Rokkasho, Japan
- Staff: 460+ (mostly engineers)
- Budget
 - > 2007-2020 ~€6.8bn (2008 values)
 - > 2021-2027 ~€5bn (2018 values)

Fusion development in Europe

What is ITER?

The next major milestone to fusion energy

ITER will create "burning" plasmas under conditions close to those in future power plants

Demonstrate continuous fusion energy

Fusion energy released on large scale

10 times more energy generated than consumed

Study of "burning plasma" and its long operation

Testing key technologies for future fusion reactors

ITER is a truly international project

Sharing knowledge through in-kind

Systems with unprecedented complexity

What is Europe's role in ITER?

Pooling resources from around the world

F4E developing fusion through four main projects

ITER: Burning Plasma

Responsible for Europe's contribution to **ITER**

DONES: Materials Testing

Responsible for the design & construction of DEMO Orientated Neutron Source

BROADER APPROACH

Working with Japan on satellite fusion projects

DEMO: Continuous Power

Preparing to build power-generating Demonstration Fusion Reactor

European contributions to ITER

We have placed ~€6bn of contracts with industries & research labs all over Europe

ITER impact on European economy

€8 billion to European industry and laboratories by 2021

Approx. 40,000 job years created 2008-2020 (78,000 more until 2035)

Net value added of 12% on EU investment in ITER

Development of new cutting edge industrial technologies

Cases of spin-out technologies from ITER work emerging

Companies are expanding into new markets from ITER work

A growing German participation

- 350 participations to pre-procurement activities:
 - 230 in market surveys
 - 120 in information days

A growing German participation

• Tier-1 contracts won:

- 50+ companies and research centers
- 202 million EUR awarded by F4E (as of Dec 2021)
- 25 million EUR awarded by IO (as of Dec 2020)
- Tier-2 contracts won:
 - 60+ companies and research centers
 - 160 million EUR under F4E contracts (as of Dec 2021)

Transnational cooperation for ITER contracts

New intellectual property for ITER

Distinct IPs per PT

- 112 new IP items developed under F4E contracts in Germany:
 - Average 1 new IP every 2 contracts
 - Owned by 17 companies and research centers

German research centers are tech hubs

What is the current status of ITER?

ITER now >75% complete to <u>First Plasma</u> F4E has delivered 59% of its in-kind contributions

Overall ITER schedule

Status of EU First Plasma Systems

System	2008	2010	2012	2014	2016	2018	2020	2022	2024	2026	2028	2030	2032	2034	
Buildings	Proc. Arrangement				 A	Assembly Hall Control Room									
Toroidal Field Coils	Proc. Arrangement First TF Coil														
Poloidal Field Coils	Proc. Arrangement First PF Coil														
Pre-Compress		Proc. /	F Arrangeme	4E Contra nt.	cts		♦ La	ower Rings	ta S	ast PF Coi					
Rings		Drog Arra	◆ F4E C	ontracts				Upper Rin	gs Eirct Sool	or					
Vacuum Vessel	♦ F4E Contracts ♦ Last Sector														
LN2 Cryoplant	 Proc. Arrangement First Components Delivered F4E Contracts Start of Construction 												-Fusion ower 2		
ITER Schedule									Pre-Fu	Sion Powe	r 1 🔷		♦ Deuterium	-Tritium	$\hat{\mathbf{C}}$

Status of EU PFP1 and PFP2 Systems

Assembly of ITER is in full spin

The European in-kind contribution

F4E & the IO working to identify optimal design for the Hot Cell Complex

Objectives:

- 1. Clarify requirements
- 2. Design the Hot Cell with the optimum size for the needs & cost effectively
- 3. Agree with IO & other DAs on the scope for which F4E is responsible
- 4. Develop a procurement strategy

Toroidal Field Coils

Europe has delivered 7 of 10 Superconducting Magnetic Coils to ITER

Poloidal Field Coils

Two EU Poloidal Field Coils (#6 & #5) installed

F4E's Poloidal Field Coil Production Line

Pre-Compression Rings (PCRs)

Pre-Compression Rings (PCRs) in central column

Vacuum Vessel (VV)

First EU Vacuum Vessel Sector >95% complete)

Europe completed & is commissioning the largest liquid nitrogen cooling plant in the world

Divertor Inner Vertical Target prototypes

Delivery of the European Full-Scale prototype to IO for assembly trials onto the Divertor Cassette Assembly Full Scale prototype Successful High Heat Flux testing up to 20 MW/m² of the Test Assembly

58 Divertor Cassette Bodies

Neutral Beam Heating

The ITER Neutral Beam Test Facility

NBTF Source Accelerator

Pre-assembly and testing of the grid segments

Grounded grid on the 15tons 90° tilting assembly structure

Neutral Beam & Electron Cyclotron Power Supplies

1st unit of Residual Ion Dump Power Supplies system delivered at NB Test Facility (MITICA)

Half of the EU Electron Cyclotron Power Supply units delivered to ITER (including all First Plasma units)

Delivered so far: 175 packages, 190 tons, 800 m³

What are we learning from ITER construction?

Technological challenges

Known unknowns

- Technologies
- Materials
- Designs
- Scaling up of manufacturing processes

Technological challenges

Known unknowns

- Heat loads on plasma facing components, erosion
- Long term material behaviour under neutron bombardment (irradiation at 14.1 MeV)
- Runaway electrons (efficiency and heat losses)
- Reliability/availability of high power density systems (e.g. heating)
- NDT of high thickness, multi-shell nuclear welds
- •

System challenges

Unknown unknowns

- Organizational fragmentation
- High system integration
- Nuclear regulatory aspects
- Globally dispersed supply chain

Towards commercial power plants

operations

Thank You

i auf an an air anna

FUSION FOR ENERGY

STADIO S