

Pioneering Laser Fusion Energy

Prof. Dr. Markus Roth, Chief Science Officer

Berlin June, 2023

Focused Energy is the leading laser fusion company on both sides of the atlantic

A US-German Deep-Tec Startup assembling the best scientists of both sides of the Atlantic

- Strongly supported by the US and EU IFE community
- Peer reviewed scheme accepted and based on >20 years of experiments and theory
- Best science team of all IFE startups
- Award winning: 2 INFUSE proposals
- Chosen by the DOE Public Private Partership Program (PPP) of the Biden Administration
- Chosen as partner of two OFES IFE centers of excellence (IFE hub) in the US

A trans-atlantic bridge to hire the best people on both sides

- Founded in July 2021
- Offices in Austin, Texas and Darmstadt, Hessen.
- Unique laser-fusion approach, extending the breakthrough results to IFE using the direct-drive proton-fast-ignition scheme

Compared to other IFE Startups

Focused Energy (direct-drive proton fast ignition):

- Science directly supported by NIF result (same fuel, same burn propagation)
- ✓ >24 years of int. research on PFI
- Laser technology demonstrated
- Clear path to target technology
- Power plant conceptual design study

Longview Fusion (indirect drive hot spot ignition):

- Science directly supported by NIF result (same fuel, same mechnaism, same burn propagation)
- \checkmark >40 years of int. research in ICF
- ✓ Laser technology demonstrated
- No clear path to high-gain targets / proliferation
- Power plant conceptual design study

Xcimer Fusion (KrF, indirect drive hot spot ignition):

- Science directly supported by NIF result (same fuel, same burn propagation)
- ✓ >40 years of int. research in ICF
- Laser technology unproven, high risk
- No clear path to high-gain targets / proliferation
- Power plant conceptual design study with large targets

Marvel Fusion (non-thermal ignition of pB11):

- Science different from NIF result (different fuel, different mechanism)
- No peer reviewed documents on mechanism
- Laser technology unproven, high risk
- Exawatt laser absorber targets
- Power plant parameters extreme (DDFIW 2023)

We assembled the most renowned IFE Team in private Industry

>1850 peer reviewed publications on the concept

BOARD

Chief Executive Officer Thomas Forner

- 20+ vears experience as CEO/CFO
- Expert in developing and leading of international High-Tec companies

Chief Science Officer Prof. Dr. Markus Roth

- Professor TU Darmstadt, GER Director Emertius APS - Fellow, Rosen Award
- Founder of the IC for Nuclear Photonics
- 25+ vears in fusion research
- Invented the Proton Fast Ignition Concept

Dr. William Goldstein **Dakin Sloss** Lawrence Livermore

Prime Movers Lab Partner National Laboratory Deep-Tec Lead Investor

IFE EXPERTS

Dr. Pravesh Patel NIF ICF Program Element Lead

Lead of the LLNL Fast Ignition Program

Prof. Dr. Stefano Atzeni

• Professor at the LaSapienza University, Rome, Italy The theory expert in IFE

Dr. Charlie Jarrott

- Simulation and Modeling expert at LLNL Expert in integrated •
 - experiment simulations

Leading IFE experts have guit their positions in National Laboratories and Universities to join FE

Dr. Debbie Callahan

- 35 years at LLNL Group leader Target design
- Co-leader of ignition campaign
- 2012 Dawson Price

Prof. Dr. Paul Gibbon

- Professor and Director theory at Forschungszentrum Jülich
- Expert in laser-plasma Interaction

- Lead of the LANLphysics programs Expert in nuclear and
 - plasma physics

Dr. Wolfgang Theobald

- Leading expert on direct drive experiments at LLE / OMEGA laser
- Expert in Fast Ignition experiments

Prof. Dr. Javier Honrubia

- Professor at Politechnica Madrid Spain
- Leading expert in fast ignition simulations

Prof. Dr. Jose Manuel Perlado

- Fusion Nucleaire at Politechnica Madrid, Spain
- Expert in reactor structural materials and activation

STAC

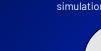
Prof. Riccardo Betti

University of Rochester Leading expert for directdrive fusion

Dr. Kurt Schoenberg

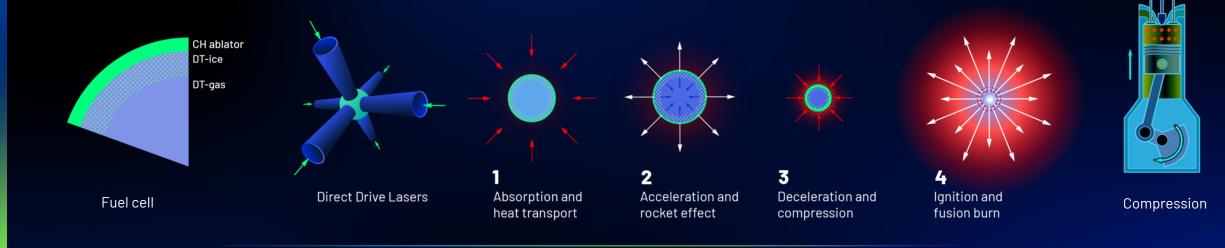
- Los Alamos Neutron Science Center
- **Director Emertius**
- >35 years of experience leading large science infrastructures

Dr. Juan Carlos Fernandez


- Los Alamos National Laboratory
- >20 years of leading plasma and
- fusion as group leader at LANL Expert in Fast Ignition and ion acceleration

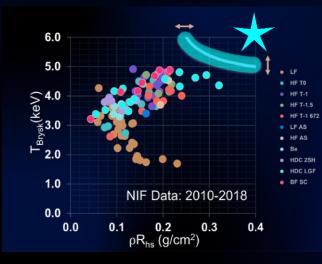
Prof. Vladimir Tikhonchuk

- University of Bordeaux, France and ELI Beamlines, Czech Republic
- Expert for theory in laser- and plasma physics

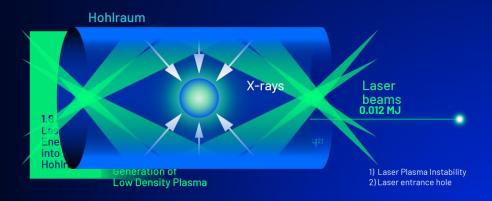

Professor and Director Insituto

Inertial Fusion is a pulsed, high-density path to Fusion Energy

Fusion is when light nuclei are merged into heavier nuclei which results in large releases of energy.

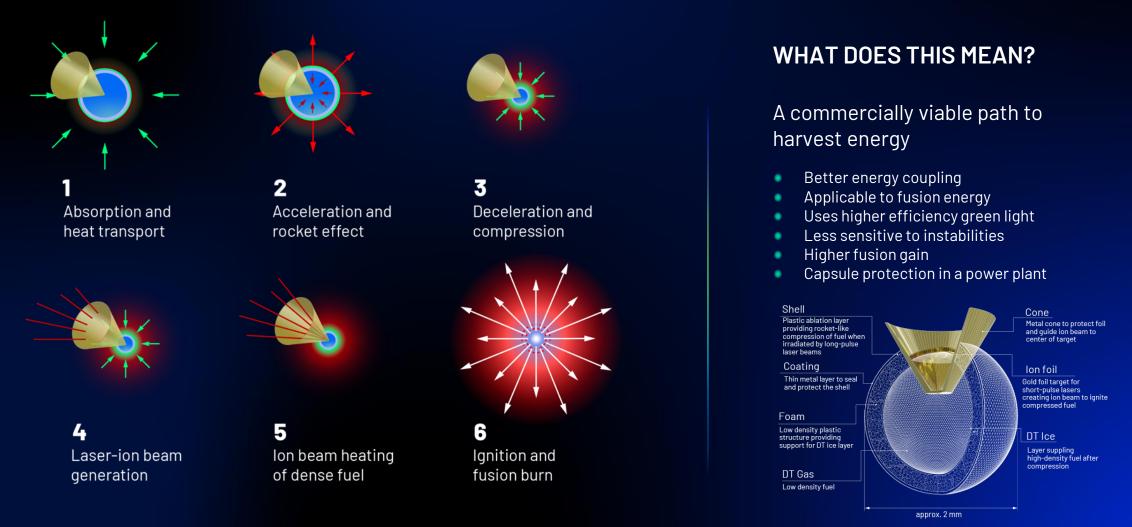


December 6th, 2022


Singular scientific event that changed commercial viability of IFE

> 3 MJ of fusion yield was produced

150% Scientific target gain


Losses due to Indirect drive

We took IFE to a new level

... by combining direct-drive laser fuel compression with **proton fast ignition**

Direct-drive, Proton Fast Ignition using a cone-guided capsule

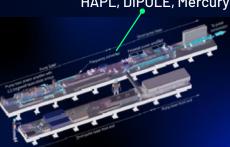
Comparison NIF <> Focused Energy

We are aiming at a laser energy output of 0.9 MJ for QUASAR, our FOAK Fusion power plant.

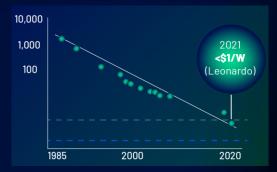
Modern lasers are at least 10% efficient. Therefore, we just need 9 MJ of laser energy input.

NATIONAL IGNITION FACILITY			QUASAR
COMPANY	NATIONAL IGNITION FACILITY	INCREASE OF EFFICIENCY	QUASAR
Laser Electrical Energy Input	400 MJ	20x: Laser Efficiency >10%	9 MJ (due to diode pumped lasers efficiency)
Laser Energy Output	2 MJ	150 KJ Ignition Laser 750 kJ compression laser	0.9 MJ
Conversion X-Rays	0.2 MJ		
Burn Fraction of DT Fuel	2%	10x: better burn of fuel due to better assembly and fast ignition	20%
Energy Output	3.1 MJ G=1.5 (Laser gain) G=0.008 (Electrical to Fusion)		165 MJ G=180 (laser gain) G= 20 (Electrical to Fusion)

Right time for laser fusion



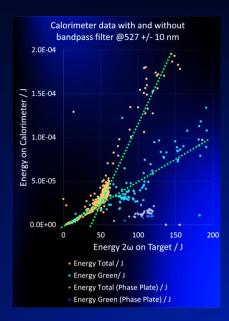
Breakthrough in laser technology


Laser with 10 Hz repetition rate, high energy and wall-plug efficiency have been developed in recent years

100 J pulsed laser with 10 Hz HAPL, DIPOLE, Mercury

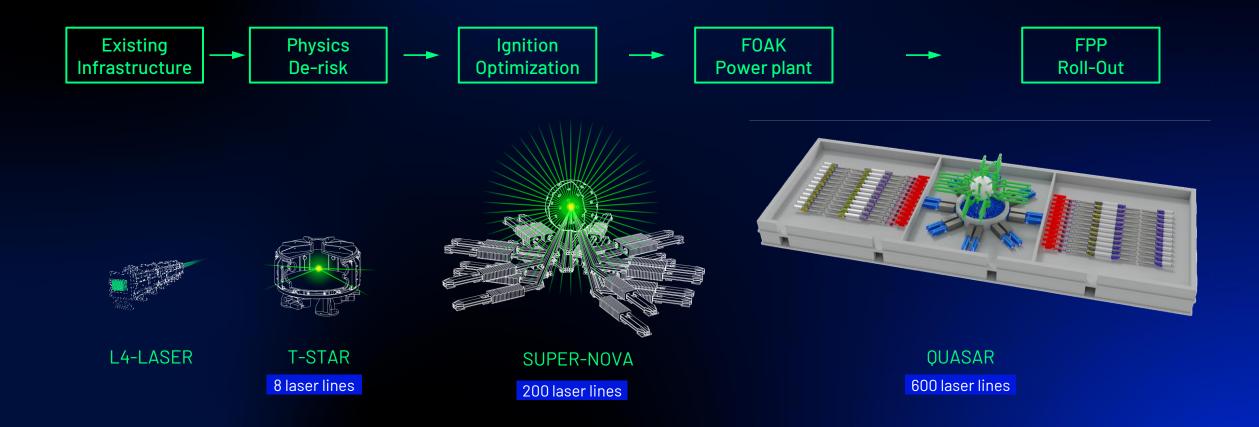
Multi-PW lasers have now been built and can be commercially obtained

Cost for laser diodes dropped to \$0.4/W < \$0.05/W is expected


New target technology production methods will lead to mass fabrication Cost will come down significantly

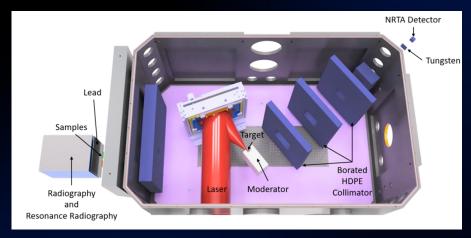
Test facilities will lead to >100 experiments a day

Rapid progress due to machine learning based on real physics data

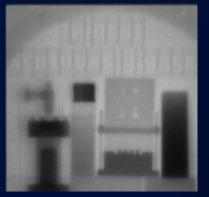


New test facilities could be operational by 2026 (T-STAR)

Focused Energy builds upon apon a scaled approach to Fusion Energy


We are targeting a LCOE < 40 \$/MWh due to lower CAPEX and operating cost

Spin-off technologies will address societal needs and generate revenue



High-power lasers and specialized targets will Result in utlra-bright radiation sources

Experiments at the PHELIX laser (GSI- Darmstadt)

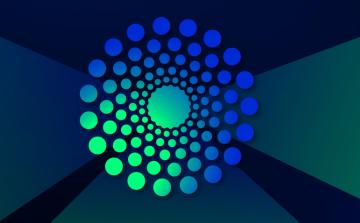
Neutron radiography (TRIDENT laser LANL)

LDRS(<1ns)

Plasma tube (> 15min)

Hard X-ray radiography

Laser-driven image: through 3cm of aluminum, <1ns exposure

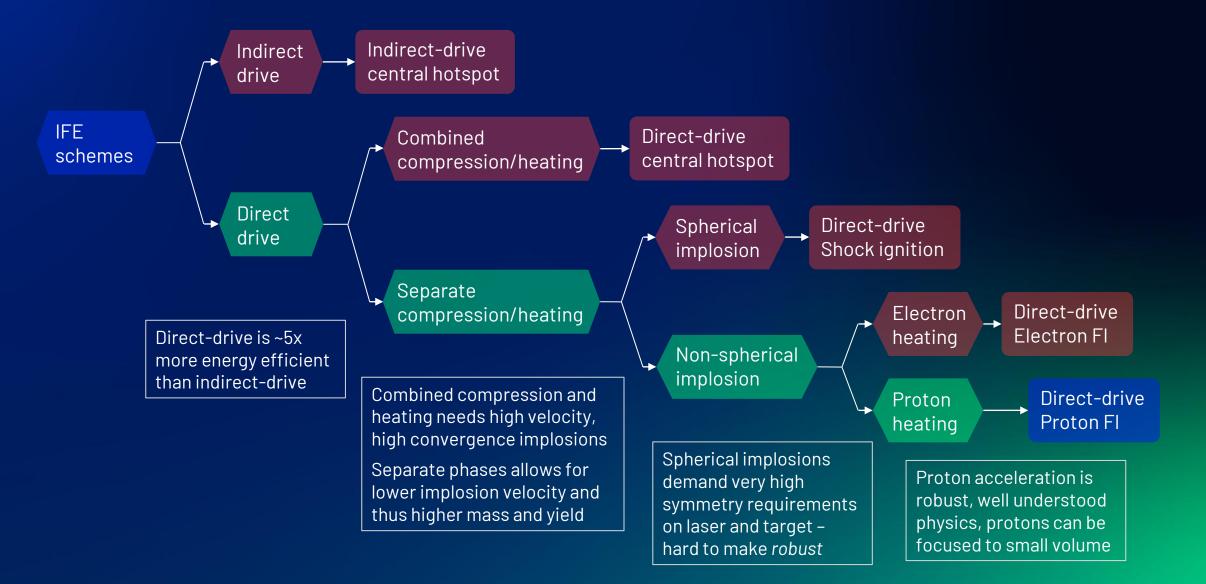

Interest from potential customers:

CFK testing H-storage and

Focused Energy INDUSTRY EcoSystem

INTL RESEARCH LABS

EU RESEARCH LABS


Thank you

Markus Roth Chief Science Officer markus.roth@focused-energy.world

FE has taken a thorough down-select on the fusion scheme

